4,188 research outputs found

    The first direct double neutron star merger detection: implications for cosmic nucleosynthesis

    Get PDF
    The astrophysical r-process site where about half of the elements heavier than iron are produced has been a puzzle for several decades. Here we discuss the role of neutron star mergers (NSMs) in the light of the first direct detection of such an event in both gravitational (GW) and electromagnetic (EM) waves. We analyse bolometric and NIR lightcurves of the first detected double neutron star merger and compare them to nuclear reaction network-based macronova models. The slope of the bolometric lightcurve is consistent with the radioactive decay of neutron star ejecta with Ye0.3Y_e \lesssim 0.3 (but not larger), which provides strong evidence for an r-process origin of the electromagnetic emission. This rules out in particular "nickel winds" as major source of the emission. We find that the NIR lightcurves can be well fitted either with or without lanthanide-rich ejecta. Our limits on the ejecta mass together with estimated rates directly confirm earlier purely theoretical or indirect observational conclusions that double neutron star mergers are indeed a major site of cosmic nucleosynthesis. If the ejecta mass was {\em typical}, NSMs can easily produce {\em all} of the estimated Galactic r-process matter, and --depending on the real rate-- potentially even more. This could be a hint that the event ejected a particularly large amount of mass, maybe due to a substantial difference between the component masses. This would be compatible with the mass limits obtained from the GW-observation. The recent observations suggests that NSMs are responsible for a broad range of r-process nuclei and that they are at least a major, but likely the dominant r-process site in the Universe.Comment: 11 pages, 8 figures; accepted for A \&

    Detectability of kilonovae in optical surveys: post-mortem examination of the LVC O3 run follow-up

    Get PDF
    The detection of the binary neutron star (BNS) merger GW170817 and the associated electromagnetic (EM) counterpart, the 'kilonova' (kN) AT2017gfo, opened a new era in multimessenger astronomy. However, despite many efforts, it has been proven very difficult to find additional kNe, even though LIGO/Virgo has reported at least one BNS event during their latest run, O3. The focus of this work is the exploration of the sensitivity of the adopted optical surveys searching for kNe during O3. We propose ways to optimize the choices of filters and survey depth to boost the detection efficiency for these faint and fast-evolving transients in the future. In particular, we use kN models to explore the dependence on ejecta mass, geometry, viewing angle, wavelength coverage, and source distance. We find that the kN detection efficiency has a strong viewing-angle dependence, especially for filters blueward of i-band. This loss of sensitivity can be mitigated by early, deep, observations. Efficient gri counterpart searches for kNe at ∼200 Mpc would require reaching a limiting magnitude mlim = 23 mag, to ensure good sensitivity over a wide range of the model phase-space. We conclude that kN searches during O3 were generally too shallow to detect BNS optical counterparts, even under optimistic assumptions

    Ventricular constraint in dilated cardiomyopathy: A new, compliant textile mesh exerts prophylactic and therapeutic properties

    Get PDF
    BackgroundDilated cardiomyopathy is associated with a progressive decrease in cardiac function, leading to end-stage heart failure. We aimed to stop this process by mechanically constraining the heart with a new, compliant textile mesh.MethodsIn 16 male Munich minipigs (50 ± 7 kg), dilated cardiomyopathy with congestive heart failure was induced through 4 weeks of rapid ventricular pacing (220 beats/min). In the early-mesh group (n = 8), a polyvinylidene fluoride mesh was positioned around both ventricles before pacing was started. In the other group (n = 8), experimental dilated cardiomyopathy through rapid pacing was induced (no mesh). After mesh grafting, rapid pacing was continued (late mesh).ResultsRapid pacing in the no-mesh group (control group) significantly decreased both systolic (cardiac output, peak systolic pressure, and the derivative of pressure increase [dP/dtmax]) and diastolic (minimum rate of pressure rise [dP/dtmin] and left ventricular end-diastolic pressure) variables, whereas these variables remained almost unchanged in the early-mesh group. In the late-mesh group the passive-elastic constraint not only prevented further deterioration but even exerted reverse remodeling to some extent (dP/dtmax and left ventricular end-diastolic pressure, P < .05).ConclusionsVentricular constraint with the new mesh seems to be a prophylactic and therapeutic option in cardiac insufficiency caused by ventricular dilation. This passive-elastic cardioplasty induced reverse remodeling of dilated hearts and significantly improved diastolic and systolic ventricular function

    The Rising Light Curves of Type Ia Supernovae

    Get PDF
    We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF) and the La Silla-QUEST variability survey (LSQ). We fit these early data flux using a simple power-law (f(t)=α×tn)(f(t) = {\alpha\times t^n}) to determine the time of first light (t0)({t_0}), and hence the rise-time (trise)({t_{rise}}) from first light to peak luminosity, and the exponent of the power-law rise (nn). We find a mean uncorrected rise time of 18.98±0.5418.98 {\pm} 0.54 days, with individual SN rise-times ranging from 15.9815.98 to 24.724.7 days. The exponent n shows significant departures from the simple 'fireball model' of n=2n = 2 (or f(t)t2{f(t) \propto t^2}) usually assumed in the literature. With a mean value of n=2.44±0.13n = 2.44 {\pm} 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of 56Ni throughout the SN ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The range of n found also confirms that the 56Ni distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light curve shape or stretch used to standardise SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves.Comment: 19 pages, 19 figures, accepted for publication in MNRA

    A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw

    Get PDF
    We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&

    The Full Event Interpretation -- An exclusive tagging algorithm for the Belle II experiment

    Full text link
    The Full Event Interpretation is presented: a new exclusive tagging algorithm used by the high-energy physics experiment Belle II. The experimental setup of Belle II allows the precise measurement of otherwise inaccessible BB meson decay-modes. The Full Event Interpretation algorithm enables many of these measurements. The algorithm relies on machine learning to automatically identify plausible BB meson decay chains based on the data recorded by the detector. Compared to similar algorithms employed by previous experiments, the Full Event Interpretation provides a greater efficiency, yielding a larger effective sample size usable in the measurement.Comment: 11 pages, 7 figures, 1 tabl
    corecore